Design – Production – Maintenance

EC machinery directive 2006/42/EC
EC directive on PPE 89/686/EEC
EASA CS 27./29.865 on external loads
Annex II

- Lifting accessories and slinging devices
- Special equipment for annex II aircrafts
- PPE against falls from a height
- Personnel-carrying device systems PCDS

Expert assistance

- Damage expertise
- Training of qualified persons (in accordance with BGG 906)
- R&D in collaboration with official authorities (BGV, BFH)
- Consulting (BG Verkehr, Chemnitz TU and others)

www.luftfahrt-sv.de
These are our clients....

www.air-work.com
Human external cargo (HEC), fixed rope systems

EASA CS-27.865 / CS-29.865 on external loads
- Human external cargo (HEC)

EASA CM-CS-005 Certification Memorandum
- Personnel-carrying device systems (PCDS)
 - simple PCDS
 - complex PCDS
Personnel-carrying device systems (PCDS)

- Simple PCDS
 - certified in accordance with EC dir. 89/686/EEC
 - certified in accordance with a harmonised EN standard
 - listed in EASA CM-CS-005
 - designed to transport maximum 2 persons
 - safety factor 7 [-] for steel, 14 [-] for textiles
 - CE conformity approved by EC type examination
 - (STC > EASA FORM 1)

Note: only minor change approval required

> Part SPO AMC1 SPO.SPEC.HEC

EN 1498
Simple PCDS …

EN 354 - EN 358
EN 538 - EN 361
EN 813 - EN 12277
EN 358
EN 362 – EN 12275

EN 1891 A (kernmantel ropes with low elongation, aka static ropes)

1 – 2 persons

Examples
... and devices which are not listed in EASA CM-CS-005

EN 341 A
EN 12278
EN 567 – 12841
EN 892 (dynamic alpine ropes)
Personnel-carrying device systems (PCDS)

- Complex PCDS
 - EASA CS-27./29.865 major change approval (STC)
 - Part 21 J DO + Part 21 G PO (DO-PO arrangement)
 - no EC type examination required
 - no compliance with EN standards required
 - from 1 person (currently up to 10 persons)
 - calculation based on CS-27./29.865, .303, .619, etc.
 - design load limit HEC 3.5 g (as for LufABw)
 - proof of CS-27./29.305 compliance regarding strength and deformation

Examples

Full-scale test
Complex PCDS …

Redundancy system AS332L
GSG9 – WLL 800 kg

> 2 persons

Horizontal net – WLL 1 person
Comparison: EN 1891 vs. Dyneema (HMPE) ropes used for rescue

Properties

<table>
<thead>
<tr>
<th>EN 1891, Ø 12.5 mm</th>
<th>Dyneema SK 78, Ø 8 mm + cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL up to 37 kN</td>
<td>UL min. 52 kN</td>
</tr>
<tr>
<td>max. WLL 270 kg/2.64 kN 14 [-]</td>
<td>min. WLL 380 kg/3.7 kN</td>
</tr>
<tr>
<td>Bearing parts: core and cover</td>
<td>Bearing part: core only</td>
</tr>
<tr>
<td>Load-bearing share of cover ≥ 30.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Load-bearing share of core ≥ 33.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Rope Ø min. 8.5, max 16 mm</td>
<td>no limit values</td>
</tr>
<tr>
<td>Elongation ≤ 5% (100 kg)</td>
<td>< 0.3% at WLL</td>
</tr>
<tr>
<td>HEC – shock absorber required: no</td>
<td>HEC: yes</td>
</tr>
</tbody>
</table>

Examples

30th International Helicopter Forum Bückeburg 2017
Comparison: EN 1891 ropes vs. Dyneema ropes

Consequences of cover damage (cut caused by a sharp edge)

EN 1891: cover bears > 30%

Dyneema: non-bearing cover

Loss of cover = min. 30% loss of UL

Loss of cover = no consequences

Core reaction to cutting

Video 1: EN 1891 A, 11 mm

Test_EN1891_11.MOV

Video 2: EN 1891 A, 12.5 mm

Test_EN1891_12.MOV

Video 3: Dyneema, 6 x 5 mm

Test DY-6-5 MA.MOV

Examples
Commentary on the videos

Empirical test during which it was attempted to sever ropes by means of a carpet cutter. The test was held on 3rd of July, 2017. Load 50 kg, rope length approximately 1.20 m. Standard rope cutter, manually operated. No force measurements taken.

Video 1: EN 1891 A, 11 mm

Rope compliant with EN 1891 A, 11 mm, made by Gleistein. Both cover and core are bearing elements and stressed in tension. A carpet cutter was placed onto the rope to remove the cover. Duration: 3 seconds. Total rope failure.

Video 2: EN 1891 A, 12.5 mm

Rope compliant with EN 1891 A, 12.5 mm, made by Mammut AG. Both cover and core are bearing elements and stressed in tension. A carpet cutter was carefully placed on the cover to remove it with a circular cut. A neat separation of the cover from the core was not possible. Duration: 39 seconds. Total rope failure.

Video 3: Dyneema, 6 x 5 mm

6 x 5 mm DynaOne HS rope with PES cover. Rope cover not load-bearing and not in tension. The cover could be separated from the core. Duration: 28 seconds. Subsequently, a 5 mm DynaOne HS strand was severed by violent cutting movements while applying pressure. Duration: 16 seconds. Accidentally, 2 further strands were partly cut. Nevertheless, no rope failure occurred since the remaining strands could bear the load.
Synopsis

A system’s safety is not simply the sum of the strength of its single elements (statics), complete certification (CVE), compliance with standards (references by the authorities) and appropriate costs (commerce).

A most important aspect is the SUITABILITY of the material used with regard to its intended application.
Thank you very much for your attention!

www.air-work.com