Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Avalanche Rescue Beacon with Smartphones

Thu, Oct. 9 @ IKAR 2014 Matthias Mock

Master Student, ETH Zürich & Uepaa AG matthias.mock@uepaa.ch

STOPDANGER OF AVALANCHE

AVALANCHE

DECLARATION - This is a joint master thesis project

Academia / Project

Master Thesis at ETH Zürich

Student:

Matthias Mock

Academic Supervision

- Prof. Dr. Bernhard Plattner (Head of Communication Systems Group)
- Bernhard Distl (ETH Zürich)

Industrial Supervision

- Dr. Franck Legendre (CTO Uepaa AG)
- Mathias Haussmann (CEO Uepaa AG)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

MOTIVATION - An unsolved problem

People ski unprepared

- beacon too many risk takers don't use a rescue beacon
- b however 69% own a smartphone

Power of smartphones

- **9** Communication
- Variety of sensors
- Powerful processing possibilities

So we wanted to give that an academic spin!

SEARCH PROCEDURE - Existing apps focus on Phase C only

THE THEORY - Problem definition and related work

Current localization approaches can be divided into three main fields

- **Itime of Arrival (ToA) / Time Difference of Arrival (TDoA)**
- Angle of Arrival (AoA)
- Received Signal Strength Indicator (RSSI)

THE REALITY - It's far more complex!

Factors that influence WiFi and Bluetooth Signal (link budget)

- **I** Free space loss
- Snow attenuation (reflection loss, loss due to propagation speed change & transmission loss)
- Body attenuation (victim and searcher)
- Ground reflection (multi-path model)
- Sloped terrain
- snow type

. . .

h dair2 dair Ot2 Ot dsnow S dsnow Z Og Og

Receiver

THE SIMULATOR - Reality can be modeled

The simulator is able to model

- Any kind of radio signal (incl. WIFI, Bluetooth and "old" 457kHz technology)
- Any kind of burial location
- Any kind of searcher location & their own impact
- Any kind of snow condition

Other effects assessed

GSM reception under snow

We calibrated the simulator in snow

121 measurement points
10 measurements / point
2 setups without body
3 setups with body

40m

We calibrated the simulator in snow

40m

We calibrated the simulator in snow

We calibrated the simulator in snow

Main findings

- 80 % average agreement between measured and modelled WiFi signal strength
- Predicted GSM signal strength sowed only 4-8 dP different YES, it's verified! compared to measure
- Area of reception show

THE SIMULATOR - Now we don't have to wait for snow

OUR PHASE B APPROACH - The requirements

Our goal

- Obtain an accurate direction towards the victim
- **Get within 3m** of the victim when starting **30m** away

TURN AROUND & RECORD WIFI SIGNAL

Find victim orientation by making use of body attenuation in a 360° turn

TURN AROUND & RECORD WIFI SIGNAL

Find victim orientation by making use of body attenuation in a 360° turn

PROCESS SIGNAL & CALCULATE ORIENTATION

Apply sophisticated signal processing and filtering algorithms

TURN AROUND & RECORD WIFI SIGNAL

Find victim orientation by making use of body attenuation in a 360° turn

PROCESS SIGNAL & CALCULATE ORIENTATION

Apply sophisticated signal processing and filtering algorithms

TURN AROUND & RECORD WIFI SIGNAL

Find victim orientation by making use of body attenuation in a 360° turn

PROCESS SIGNAL & CALCULATE ORIENTATION

Apply sophisticated signal processing and filtering algorithms

OUR PHASE B APPROACH - The results

The goal

Get within **3m** of the victim => The orientation error should not exceed **5.7**°

Preliminary results

- Abs mean error $= 2.6^{\circ}$
- Std deviation = **3.0**°

Desired orientation accuracy achieved (first tests)

OUR PHASE C APPROACH - Standard search procedure

THE VERDICT - Does it work in the field?

September 2014 @ High Altitude Research Station Jungfraujoch (3454m)

- In 3 days of testing, over 200 search procedures
- Uerified turn accuracy (Phase B)
- Measured search time and search accuracy
 (Phase B + C)
- Compared with an Avalanche Beacon System (ABS)
- **I** Evaluated influence of other people on the field

THE VERDICT - Phase B orientation accuracy

THE VERDICT - Overall search time and localization error

Single Victim (20 measurements) Distances: 20, 10 m

	Search time		Localization Error	
	Absolute Mean	Std	Absolute Mean	Std
Smartphone	120.5 s	28.7 s	0.12 m	0.10 m
ABS	105.5 s	17.9 s	0.12 m	0.08 m

16 % relative increase compared to classical ABS

Same precision compared to ABS

CONCLUSION - We are ready for the pocket

PENDING

Uepaa.

Conclusion

- Orientation accuracy
- Search time +16%
- Search accuracy
- Enhanced audible feedback

Additional contributions

- **I** Evaluation of current localization schemes
- Evaluation of multi searcher approach (triangulation)

ACKNOWLEDGEMENTS

SPECIAL THANKS GOES TO

- り 🛛 Team from Uepaa
- University of Bern (i.e. High Altitude Research Station)
- 🞐 🛛 Jungfraujoch Bergbahn
- 🞐 🛛 Andermatt Bergbahn
- IKAR for having me here

HFSJG High Altitude Research Stations Jungfraujoch & Gornergrat

ЯĽ

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

swisscom MAMMUT rega ____ Zürcher Kantonalbank < SAMSUNG 0 Configuration Science Configuration Science Configuration Science Configuration Science ETH idgenössische Technische Hochschule Zürich wiss Federal Institute of Technology Zurich ▶ jobs.ch Bergportal alpinerettungschweiz R

UEPA® ALPINE SAFETY - BEYOND THE NET