

Hypothermia stage IV Which patients to rewarm? The H[®]PE score

Dr Mathieu PASQUIER

Emergency Department, Lausanne University Hospital, Switzerland ICAR 20.10.2018 Chamonix Mont-Blanc

Hypothermia IV => prehospital

Hypothermia stage IV = Hypothermia and cardiac arrest

Potential for good outcome

"No one is dead until warm and dead"

Hypothermia IV => hospital

Does this patient may survive with proper treatment ?

ExtraCorporeal Life Support (ECLS) rewarming

Hypothermia IV => hospital

ExtraCorporeal Life Support (ECLS) rewarming

Potassium triage: validated?

"Yeah, but good luck getting it peer-reviewed."

What are the problems?

- Dichotomous approach based on sequential single variables (temperature, potassium)
- ✤ The evidence level is low
- ✤ The risk of bias is high
- Unique in emergency medicine to decide with one single biological parameter of life vs death
- A lot of potential prognostic factors or confounder in other ECLS studies are not included in the actual model

Key question

How can we better decide at hospital admission which hypothermic cardiac arrest patient would most benefit from ECLS rewarming?

=> Focus on the hospital decision

Service des urgences

Main goals:

 to collect retrospectively enough cases of CA patients rewarmed with ECLS
 to build a score to predict survival Resuscitation 126 (2018) 58-64

Contents lists available at ScienceDirect

Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation

Clinical paper

Hypothermia outcome prediction after extracorporeal life support for hypothermic cardiac arrest patients: The HOPE score *

Mathieu Pasquier^{a,*}, Olivier Hugli^a, Peter Paal^b, Tomasz Darocha^c, Marc Blancher^d, Paul Husby^e, Tom Silfvast^f, Pierre-Nicolas Carron^a, Valentin Rousson^g

^a Emergency Department, Lausanne University Hospital, Lausanne, Switzerland

^b Department of Anesthesiology and Intensive Care Medicine, Hospitaller Brothers Hospital, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria

^c Severe Accidental Hypothermia Center, Department of Anaesthesiology and Intensive Care, Medical University of Silesia, 055, Poniatowskiego 15, Katowice, Poland ^d SAMU 38, Pôle Urgences – Médecine Aiguë, CHU de Grenoble, BP 217, 38043 Grenoble Cedex 09, France

^e Department of Anesthesia and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway

^f Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, PO Box 340, 00029 Helsinki, Finland

⁸ Institute of Social and Preventive Medicine, Lausanne University Hospital, route de la Corniche 10, 1010 Lausanne, Switzerland

FUROPEAN

Methods

- Systematic literature review of retrospective cohort studies
- Hospital unpublished data
- Patients in hypothermic cardiac arrest with ECLS rewarming
- Consecutive cases of a time interval
- Primary outcome : survival to hospital discharge
- Main goal : to build a score predicting survival

Population (derivation cohort)

286 patients

Population (derivation cohort)

Table 1

Univariate associations between potential predictors and survival. All predictors apart the rewarming method were significantly associated with survival.

		Overall (n = 286)	Survivors 106/286 = 37%	Non-survivors 180/286 = 63%	P value
Continuous potential predictors, median Age (years) Temperature (°C) Potassium (mmol/L) CPR duration (min) Categorical potential englister = c.(%)		(1QR) 35 (16-55) 24 (22-27) 4.7 (3.6 - 6.6) 120 (85-169)	40 (18–56) 23 (21–25) 3.8 (3.1–4.65) 106 (64–165)	29.5 (13–54) 25 (22–28) 5.8 (4.0–8.0) 120 (90–169)	0.035 < 0.001 < 0.001 0.013
Gender Female Male Mechanism Exposure Immersion Avalanche Cardiac rhythm Asystole Ventricular fi PEA CA Circumstane Unwitnessed Witnessed CA Type of ECLS CPB ECMO	Mechani Expos Imme	ism ure rsion		98/283 = 40/283 =	= 35% = 14%
	Submo Avala:	ersion 51	L% asphyxi	a 94/283 = 51/283 =	= 33% = 18%
		201/286 = 70% 85/286 = 30%	70/201 = 35% 36/85 = 42%	131/201 = 65% 49/85 = 58%	P = 0.228

There were 9 missing values (3 for the survivors, 6 for the dead) for the potassium and 16 for CPR duration (5 for the survivors, 11 for the dead). CA denotes Cardiac Arrest, CPB Cardiopulmonary Bypass, CPR Cardiopulmonary Bypass, CPR Cardiopulmonary Resuscitation, ECLS Extracorporeal Life Support ECMO Extracorporeal Membrane Oxygenation, PEA Pulseless Electrical Activity.

37% survivors to hospital discharge (106/286) 84% survivors with good neurological outcome

Multivariable analysis

- 🗹 Gender
- Mechanism
- 🗹 Potassium
- 🗹 Temperature
- 🗵 Witnessed cardiac arrest
- 🗵 Initial cardiac rhythm
- 🗹 Low flow
- 🔀 Type of ECLS

The **H®PE** score

🖬 Swisscom 🗢	21:03	97% 🛑 👎
=	🔒 urg-admin.ch	C
Hypoth Predict Extract Suppor Cardiad The HO	ermia Outcom ion after prporeal Life t for Hypothe c Arrest Patie PE Score.	me ermic nts.
	Nobile Version	Q •
The HOPE so collaborative Emergency D Hospital of L The HOPE so	core is the result of an int project initiated and led Department of the Universi ausanne, Switzerland. core provides a prediction	ernational by the sity n of the
< >		n d

∎ urg-admin.ch	97% 🛑 🗲	∎Il Swisscom 중 2' ∎ urg-:	1:05 9: admin.ch
Age (in years)		Serum Potassium (mmo	ol/L)
		Serum potassiun	n level at admission
Gender			
Male Female		Temperature scale	
		Celsius Fahrent	neit
Hypothermia		Temperature	
with asphyxia (head fully covered	by		
water or show)			
without asphyxia (immersion, outo	door	0	
without asphyxia (immersion, outo or indoor cold exposure)	door	Click here to get the probability <	HOPE survival
without asphyxia (immersion, outo or indoor cold exposure) CPR duration (min)	door	 Click here to get the probability < 	HOPE survival

www.hypothermiascore.org

H
 PE survival probabilities

H
 PE vs potassium

H
 PE clinical usefulness

Internal validation #1

- ✤ Bootstrapping
- ✤ Year of data collection
- ✤ Origin of the data
- Hospital (lack of statistical evidence for a "center effect")

Population (validation cohort)

₩N=>100 cases

✤ Published or unpublished

ℜ Results: validation is OK

✤ Publication end 2018

Discussion

- Multivariate outcome prediction
- Six independent survival prediction
 parameters
- Paradigm shift from dichotomous to multivariable outcome prediction
- ✤ Tool for meaningful ECLS rewarming
- Improved discrimination between good and poor outcome

Conclusion

* Performs better than potassium alone

* Avoids futile rewarming attempts (Ψ overtriage)

✤ Helps motivating ECLS teams for cases with potential for good outcome (♥undertriage)

✤ H參PE score

Internally validated

✤ Beware of "extreme cases"

www.hypothermiascore.org

mathieu.pasquier@chuv.ch